Tevatron Operations Ron Moore DOE Tevatron Operations Review SC-1 Breakout March 21, 2006 ## Breakout Session Agenda - Tevatron Overview Ron Moore - Beam-Beam Effects + Orbit Helix Yuri Alexahin - Simulations, Chromatic Compensation, New Working Points - Alex Valishev #### Tevatron Overview (this presentation) - Operations Overview - Instrumentation - TEL Progress - Separator Progress - Shutdown Tasks ## Operations Overview #### Since the last long shutdown ended (12/04)... - 287 HEP stores begun (give/take a few...not counting ones lost before HEP) - Record initial lumi improved from 103 to 172 (10) 30 cm $^{-2}$ s $^{-1}$ - Record weekly integrated luminosity up to 24.4 pb⁻¹ - Delivered over 850 pb⁻¹ of data - > Both CDF & DO have recorded > 1.4 fb-1 of data each in Run II - = 28 cm β^* and Recycler-only phars boost Tevatron luminosity - Periods of outstanding reliability + 3 recent failures ## Peak Luminosity ## Integrated Luminosity per Week ## Integrated Luminosity #### Tevatron Improvements - Installing/commissioning new BPM electronics completed - 28 cm β* + optics correction - Lattice measurements exploited new BPM electronics - > Tested at end of stores; implemented in September - Pbar tune stabilization during HEP - Keep pbar tunes > 7/12 as beam-beam tune shift decreases - Helps maintain pbar lifetime - Orbit stabilization during HEP - Compensate for "fast" low-beta quad motion - > Eliminate halo spikes @ CDF & DO, maintain lifetime - Longitudinal instabilities solved - > Problem at last year's review fixed damper hardware #### Comfort Plot @ 150 GeV ## Bunch-by-Bunch Proton Losses #### Inefficiencies @ 150 GeV #### Proton Inefficiency @ 150 GeV vs Pbar Intensity #### Ramp - $150 \rightarrow 980 \text{ GeV}$ in 86 sec; max ramp rate is 16 GeV/s - 8 RF cavities 4 proton + 4 pbar - > Phased such that one beam sees no net voltage from other cavities - > RF voltage is constant; bucket area minimum early in ramp - Bunch lengths shrink by $(980/150)^{1/4} \approx 1.6$ - \triangleright e.g., protons: 2.8 ns \rightarrow 1.7 ns - Final pbar cogging done after reaching flattop - Longitudinal damper (protons) off for acceleration, on after cog - Beam separation decreases > 600 GeV - Can't run separators hard enough - Separation decreases faster than beam size ## Up the Ramp ## Ramp Inefficiencies ## 类 #### Squeeze - Shrink the beams from 1.6 m \rightarrow 28 cm β * at CDF and DO - Take ≈125 sec to step through 14 different lattices - Also need to switch polarity of B17 horz separator - > Put pbars on "right" side for CDF pots for collisions - Injection helix → Collision helix - > Horizontal separation minimum at that time - > Several years ago, up to 25% pbars lost at that step - > Yuri Alexahin developed new separator scheme to fix, but it's still difficult to transition - 28 cm β * implemented in Sep 05 by Alex Valishev and Yuri - Moved proton tunes > 7/12 (pbars already there) - > Store-to-store pbar variations moved proton tunes around - > Gain bit tune space, modest non-luminous lifetime improvement #### Through the Squeeze ## Squeeze Inefficiencies #### **BB-induced Proton Losses** - Moving the proton tunes above 7/12 produced no big lifetime improvement due to store-to-store variation in tunes - However, the slant down with increasing pbar intensity became less ## Halo Removal, a.k.a. Scraping ## Luminosity Formula $$L = \frac{fN_p N_a}{2\pi(\varepsilon_p + \varepsilon_a)\beta^*} H(\frac{\sigma_z}{\beta^*})$$ ## Increasing the Luminosity - New 28 cm β* lattice - Recycler-only pbars provide larger N_a + smaller ε_a #### Effective Emittance $$\varepsilon_{eff} = \frac{fN_p N_a H(\frac{\sigma_z}{\beta^*})}{4\pi \beta^* L}$$ #### Specific Luminosity $$L_{\textit{specific}} = \frac{L}{N_p N_a}$$ #### Initial Luminosities #### Beam Intensities @ HEP #### How Much Bang for the Buck? ## β* Measurements by DO # **华** #### Pbar Tune Feedback - Pbar tunes shifted up ~0.020 due to head-on and long-range beam-beam tune shifts - Pbar tunes can decrease by ~0.01 over store as emittances grow - > Reduced lifetime while crossing 7/12 resonance - Maintain pbar lifetime by keeping tunes > 7/12 - > Monitor 1.7 GHz Schottky tune measurements - > Post an alarm when tunes getting close to 7/12 - > MCR operators push tunes up with pbar-only tune mults - Mechanism already in place for protons, too #### Tunes without Compensation #### Pbar Tune Feedback #### Magnet Motion / Orbit Stabilization #### TEL - Tevatron Electron Lens - Continuously removes DC beam in abort gap - Beam in gap when abort kickers fire not kicked into dump - > Can cause quenches and high doses in CDF - Periodic pulsing of e-beam drives beam toward tune resonances - Additional status + Beam-Beam Compensation later... ## Low Luminosity Stores - 2 low lumi stores requested for CDF & DO diffractive physics programs (forward pots) - Low intensity 36×36 , $28 \text{ cm } \beta^*$: L = 0.7 (10)³⁰ cm⁻² s⁻¹ - Normal intensity 1x1, 1.6 m β^* : L = 0.5 (10)³⁰ cm⁻² s⁻¹ - Completed successfully - > Diffractive physics program effectively complete - > CDF removed pots to install longer collimator @ A48 ## Reliability by Week in 2005+2006 #### Store Termination by Category ## Tevatron Quenches/Month # ***** ## Component Failures - Nov 21 B17 spool package - > B11 horz separator spark caused multi-house quench - Kautzky valve on spool failed closed - Jan 24 Insulating vacuum leak in A44 - > Operator error left SQDO (skew coupling) supply off - > Tunes landed badly after initiating collisions, large losses - > A44 cell not hit with losses, quenched with adjacent cells - > Faulty O-ring installation years ago finally failed - Feb 22 F47-2 dipole - > Spare abort input pulled abort spuriously - > Kautzky valve on dipole failed closed # Kautzky Valve Poppets - During quench, pressure forces valve open, allows He to escape - Poppet can break off, remain in closed position - 1 similar failure in 20 years, now 2 in three months - ➤ Replace all ≈1200 He Kautzky valve poppets during shutdown Closed Kautzky valve Broken poppet from B17 spool Kautzky valve # Aborting Beam More Quickly - Quench Protection Monitor (QPM) - > Prior to Dec 03, ran on 60 Hz clock (16.7 ms) - · Beam could circulate 100s of turns after quench - > Modified in 2004 to "fast-abort" within 900 µs of quench - > Tweaked after Nov 21 quench to pull abort within 550 μs - Voltage-to-Frequency Converters (VFC) - > Testing modification to speed measurement of resistive voltage across magnet cell - New Beam Loss Monitor (BLM) Electronics - > Will allow improved performance, greater flexibility - Being installed during shutdown #### Machine Studies and Maintenance - Refer to Study Document (Scorecard response) - Averaged ≈10 hrs / week since last shutdown - Exploit natural breaks in machine operation - > Lost stores, pbar stacks, etc. - Exploit end-of-store studies - Focus on specific, well-prepared studies - > Be efficient, prevent unnecessary quenches/downtime - > Start with proton-only stores before trying in HEP - If we really need study time to implement something new for HEP, will get the time # Instrumentation # Upgraded BPM Electronics - Installed house-by-house over few months - > In study periods, between HEP stores - An order of magnitude improvement in proton position measurements and new for pbars - \triangleright Position resolutions in the range of ~10-25 μm - Exploiting improved resolution and reliability - > Lattice measurements - Identified rolled quads (incorrectly fiducialized at magnet factory) - 28 cm β* + optics correction - > Orbit motion - > TBT coupling measurement/correction during shot-setup # Upgraded BPM Electronics ## Ionization Profile Monitor (IPM) - Installed one detector and partial readout system in Dec 05 - Some problems found and fixed - > Poor vacuum - > Ground noise - High voltage arcing - Trigger and data synchronization - Recorded first data - Complete detector installation with full readout during ongoing shutdown ### IPM Data - Store #4642 Single-turn proton bunch profiles 16 turns before injecting P36 A. Jansson #### Optical Transition Radiation Detector (OTR) - Rad-hard camera images OTR - Proton and pbar imaging - Installed at EO near IPM - Used for single → few turn injection studies - 5 μm aluminized mylar foils - Unique 2-D beam profile detector - > Others only 1-D - High resolution - > 130 μ x 170 μ size pixels - Installed in December 2005 #### First Results from Tevatron OTR # Single turn measurement of single coalesced proton bunch False-color OTR Image; 2.7e11 Protons V. Scarpine #### Early Measurements from New Digital Tune Monitor - Uses stripline as pick-up, FFT on TBT data - Hope to use without external excitation - Taken some data, 100 MHz 16-bit ADC still being improved - Continue development after the shutdown #### Proton Bunch Tunes from Digital Tune Monitor This video clip shows bunch-by-bunch oscillation differences among protons during HEP with (red) and without (blue) excitation. ## Magnet Motion - How do see magnet motion? - > Tiltmeters, LVDTs, water levels, surveys - Observed magnet motion on different time scales - > Slow drift over weeks, months - Ground motion, etc. - Wiggles, jumps over seconds, minutes, hours - · Quenches, earthquakes, HVAC, weather, tides - Vibrations at few → tens of Hz - · Traffic, pumps - ~µm magnet motion near IPs give ~mm orbit changes in arcs - > Readily observable during stores using BPMs ### Water Levels See Quench ### Sensors on Low-Beta Quads - Lots of instrumentation on low-beta quads, girders to investigate motion - > LVDTs, tiltmeters, temperature, air flow - Understand more about magnet motion and weather conditions in and out of the collision halls ### Sumatra Earthquake 3/28/05 #### Differential Thermoanemometer PTC thermistor operates in "self heat" mode, maintaining a temperature of 80C. Air movement imbalances the heating of the two NTC thermistors, giving a direction and relative velocity. # Quad Motion Depends on Hall / Tevatron Differential Pressure ### Correlations with Weather # Tevatron Magnet Rolls (March 2006) # TEL Progress ### New SEFT Gun - Beam studies in 2003-05 → need smoother edges, Gaussian too narrow → SEFT gun - Simulated (below), designed, built and tested in 2005 - Installed in TEL-1 on 12/08/05 #### TEL BPMs Improved 0.25 0.2 0.15 0.1 Position Diff, Hanning, Horz Scan → Up Horz → Up Vert Down Horz Down Vert - TEL-1 BPMs have position difference ~1 mm btw p's and e's - New BPMs designed and built for TEL-2 + narrow band algorithm #### TEL-1 BBC studies in 2005-2006 - Over two years '04-'06: - > 6 studies=20.5 hrs - Major results: - ➤ Lifetime vs dX, Q_x,y with Gaussian gun - Tune spread due to Gaussian gun (did not detect) - > dQ=0.004 SEFT gun, easy centering - > Great lifetime 130-340 hrs with SEFT gun - Simultaneous abort gap cleaning and beambeam compensation possible #### Current activities/issues - TEL-1 - > PSs, HV PSs, modulator problems - Ripple ~2% in HV amplitude - > SEFT gun died after Feb 24 quench - He-vacuum leak developed in TEL-1 after same quench,, under repair - TEL-2 tested, being installed in AO - New MARX HV generator developed but not tested yet - Comprehensive program of parallel LIFETRAC simulations to be started (BBC in Tev, RHIC and LHC). # Separator Progress #### Table of Separator Stations | Horizontal | # modules | | Vertical | # modules | |------------|-----------|--------------|----------|-----------| | B11 | 2 | short
arc | B11 | 1 | | B17 | 4 | | B48 | 1 | | | | | C17 | 4 | | C49 | 1 | | C49 | 2 | | | | | | | | D11 | 2 | long
arc | D11 | 1 | | D48 | 1 | | D17 | 2 | | A17 | 1 | | A17 | 1 | | A49 | 1 | | A49 | 2 | New separators being installed in the current shutdown Total: 26 separator modules + 4 spares Each station has 2 power supplies, polarity switch, resistors, controls... #### Tevatron Electrostatic Separator Components # Looking into a separator # Separator Progress (with TD) - Conditioned 5 spares up to ±180 kV (72 kV/cm) - > Achieved 1-2 sparks/day - Previous specs were 1 spark/day @ 150 kV - Comparing electropolished vs hand-polished stainless steel electrodes - > 3 separators have electropolished electrodes - > Electropolished show similar spark rate, 2-3× lower dark current - Testing separator with Ti electrodes now - > Warping precludes use in Tevatron useful only for R&D - Prepared 6 new 180 kV supplies for new separators + spares - Prepared 2 new 250 kV supplies for teststand use # Separator conditioning plot Conditioning at higher voltages decreased spark rate (10 kV up \rightarrow spark rate down \sim 10 times) Expected spark rate at 150 kV for separators conditioned at 180 kV will be less than 1 spark per year or about 3 order of magnitude less in comparing with traditional separator conditioned just at 150 kV. # Shutdown Work # Work Highlights in 2006 Shutdown - Fix known cold leaks (F4, E2, A3, B4) - Replace poppets on He Kautzky valves (≈1200) - Reshim remaining 228 dipoles - Unroll magnets - Quads in D1, A3 > 5 mrad (misfiducialized in factory) - Various magnets > 1 mrad since 2004 shutdown - Replace 3 separators @ A49 - Install new separators @ A17, B48 (1 each) - Install TEL-2 + repair TEL-1 - Pull cables for new sextupole circuits (chromatic compensation) - Complete IPM installation - Install new crystal collimator - Infrastructure maintenance (feeders, cryo, etc.) # **类** #### Post-Shutdown Tasks - Recommission with beam…lots of changes - > Adjust coupling following the dipole reshimming, unrolls - > Implement new helices for injection and HEP - Adjust IP positions - > Already aware of low-β quad + detector motion - Commission TEL-2 - Continue commissioning of IPM and OTR - Complete chromatic compensation (split sextupole circuits) - > Finish constructing new power supplies - Connect new cables to sextupoles, run with existing settings - Machine studies to implement lattice corrections - Commission new BLM electronics - Conduct machine studies on new working points (1/2, 2/3) - Deliver lots of luminosity to CDF and DO # **类** ### Summary - Overall a good year for Tevatron operations - > Luminosity increases due to 28 cm β* and Recycler phars - New instrumentation commissioning completed/underway - > BPM electronics, IPM, OTR,... - Run II Upgrade projects nearing completion - Separators, TEL-2, survey/alignment, dipole shimming... - Attacking reliability issues - Repairing known cold leaks, replacing poppets, new BLM electronics - Preparing for higher intensities + luminosity - New sextupole circuits for chromatic compensation - > Investigating new working points - > Progress on simulations - Looking to maximize delivered luminosity to CDF & DO